l'istituto

L’eredità di Enrico Fermi. Le sfide del futuro

bandi e avvisi

STIAMO CERCANDO...
leggi tutto

terza missione

Il CREF nasce con la duplice anima di Centro di Ricerca e di Museo Storico, con l’intento di conservare e diffondere la memoria di Enrico Fermi, oltre che favorire un’ampia diffusione e comunicazione della cultura scientifica.

news

Pubblicazioni, novità, rassegna stampa

Per interviste, riprese e informazioni scrivere a comunicazione@cref.it

No posts found

le persone

la ricerca

Il CREF promuove linee di ricerca originali e di grande impatto, improntate ai metodi della fisica, ma con un forte carattere interdisciplinare e in relazione con i principali problemi della moderna società della conoscenza.

NEWS e pubblicazioni

Laplacian renormalization group for heterogeneous networks

Laplacian renormalization group for heterogeneous networks

Authors : Pablo VillegasTommaso GiliGuido Caldarelli & Andrea Gabrielli 

Published in: Nature Physics 19, pages445–450 (2023)

The renormalization group is the cornerstone of the modern theory of universality and phase transitions, and it is a powerful tool to scrutinize symmetries and organizational scales in dynamical systems. However, its application to complex networks has proven particularly challenging, owing to correlations between intertwined scales. To date, existing approaches have been based on hidden geometries hypotheses, which rely on the embedding of complex networks into underlying hidden metric spaces. Here we propose a Laplacian renormalization group diffusion-based picture for complex networks, which is able to identify proper spatiotemporal scales in heterogeneous networks. In analogy with real-space renormalization group procedures, we first introduce the concept of Kadanoff supernodes as block nodes across multiple scales, which helps to overcome detrimental small-world effects that are responsible for cross-scale correlations. We then rigorously define the momentum space procedure to progressively integrate out fast diffusion modes and generate coarse-grained graphs. We validate the method through application to several real-world networks, demonstrating its ability to perform network reduction keeping crucial properties of the systems intact.

Read the full article

 

Condividi questo articolo: