the institute

The legacy of Enrico Fermi. The challenges of the future

about us
the organization

research

CREF promotes original and high-impact lines of research, based on physical methods, but with a strong interdisciplinary character and in relation to the main problems of the modern knowledge society.

Principal Research Lines
Individual research areas
History of Physics
LABORATORIES AND INFRASTRUCTURES
Research staff

third mission

The CREF was born with a dual soul: a research centre and a historical museum. Its aim is to preserve and disseminate the memory of Enrico Fermi and to promote the dissemination and communication of scientific culture.

next EVENT

Ore All day

Project Meeting

Young researchers

Higher education and projects for young researchers

Open positions...
Read more

news

News, publications, talks, press release

cover_cref_talk_gianni_jacucci

NEWS

Ranking species in complex ecosystems through nestedness maximization

Identifying the rank of species in a complex ecosystem is a difficult task since the rank of each species invariably depends on the interactions stipulated with other species through the network’s adjacency matrix. A common ranking method in economic and ecological networks is to sort the nodes such that the layout of the reordered adjacency matrix looks maximally nested with all nonzero entries packed in the upper left corner, called Nestedness Maximization Problem (NMP). Here we solve this problem by defining a suitable cost-energy function for the NMP, which reveals the equivalence between the NMP and the Quadratic Assignment Problem, one of the most important combinatorial optimization problems, and use statistical physics techniques to derive a set of self-consistent equations whose fixed point represents the optimal nodes’ rankings in an arbitrary bipartite mutualistic network. Concurrently, we present an efficient algorithm to solve the NMP that outperforms state-of-the-art network-based metrics and genetic algorithms. Eventually, our theoretical framework may be easily generalized to study the relationship between ranking and network structure beyond pairwise interactions, e.g. in higher-order networks.

Authors

Communications Physics volume7, Article number: 102 (2024) Cite this article

https://www.nature.com/articles/s42005-024-01588-8

share on:
© Centro Studi e Ricerche Enrico Fermi. All rights reserved | Cookie Policy