l'istituto

L’eredità di Enrico Fermi. Le sfide del futuro

Chi Siamo
l'organizzazione

la ricerca

Il CREF promuove linee di ricerca originali e di grande impatto, improntate ai metodi della fisica, ma con un forte carattere interdisciplinare e in relazione con i principali problemi della moderna società della conoscenza.

Linee di ricerca strutturali
LINEE DI RICERCA individuali
Linee di ricerca in storia della fisica
infrastrutture
personale di ricerca

giovani e ricerca

Alta formazione e progetti per giovani ricercatori e ricercatrici

STIAMO CERCANDO...
leggi tutto

terza missione

CREF nasce con la duplice anima di Centro di Ricerca e di Museo Storico, con l’intento di conservare e diffondere la memoria di Enrico Fermi, oltre che favorire un’ampia diffusione e comunicazione della cultura scientifica.

PROSSIMO EVENTO

Ore 11 AM

Seminar open to scholars

news

Pubblicazioni, novità, rassegna stampa

cover_papers

NEWS e pubblicazioni

Ranking species in complex ecosystems through nestedness maximization

Identifying the rank of species in a complex ecosystem is a difficult task since the rank of each species invariably depends on the interactions stipulated with other species through the network’s adjacency matrix. A common ranking method in economic and ecological networks is to sort the nodes such that the layout of the reordered adjacency matrix looks maximally nested with all nonzero entries packed in the upper left corner, called Nestedness Maximization Problem (NMP). Here we solve this problem by defining a suitable cost-energy function for the NMP, which reveals the equivalence between the NMP and the Quadratic Assignment Problem, one of the most important combinatorial optimization problems, and use statistical physics techniques to derive a set of self-consistent equations whose fixed point represents the optimal nodes’ rankings in an arbitrary bipartite mutualistic network. Concurrently, we present an efficient algorithm to solve the NMP that outperforms state-of-the-art network-based metrics and genetic algorithms. Eventually, our theoretical framework may be easily generalized to study the relationship between ranking and network structure beyond pairwise interactions, e.g. in higher-order networks.

Authors

Communications Physics volume7, Article number: 102 (2024) Cite this article

https://www.nature.com/articles/s42005-024-01588-8

Condividi questo articolo: