l'istituto

L’eredità di Enrico Fermi. Le sfide del futuro

Chi Siamo
l'organizzazione
Linee di ricerca strutturali
LINEE DI RICERCA individuali
Linee di ricerca in storia della fisica
infrastrutture
personale di ricerca

giovani e ricerca

Alta formazione e progetti per giovani ricercatori e ricercatrici

STIAMO CERCANDO...
leggi tutto

terza missione

CREF nasce con la duplice anima di Centro di Ricerca e di Museo Storico, con l’intento di conservare e diffondere la memoria di Enrico Fermi, oltre che favorire un’ampia diffusione e comunicazione della cultura scientifica.

PROSSIMO EVENTO

Ore 9

Summer School

news

Pubblicazioni, novità, rassegna stampa

cover ENTANGLED

NEWS e pubblicazioni

CREF Talk at Sapienza University

Laplacian Renormalization Group for heterogeneous networks: information core, entropic transitions and scale transformations

Andrea Gabrielli (University of Roma 3)

 →  Europe/Rome

Aula Conversi (Dip. of Physics – Building G. Marconi)

Complex networks often exhibit a rich architecture organized over multiple intertwined scales. Information pathways are expected to pervade these scales, reflecting structural insights that are not manifest from analyses of the network topology. Moreover, small-world effects correlate the different network hierarchies making the identification of coexisting mesoscopic structures and functional cores a difficult task. We first present a thermodynamic interpretation of effective information pathways throughout complex networks based on information diffusion and statistical mechanics to illuminate these issues [1]. This leads us to a formulation of a new and general Renormalization Group scheme for heterogeneous networks that permits to change resolution scale in a physically motivated way. The Renormalization Group (RG) is the cornerstone of the modern theory of scale transformation, universality, and phase transitions, a powerful tool to scrutinize symmetries and organizational scales in dynamical systems. However, its network counterpart is particularly challenging due to correlations and small-world coupling between intertwined scales. Here, we propose a Laplacian Renormalization Group (LRG) diffusion-based approach to complex networks, defining the coarse-grained supernodes and superedges concept à la Kadanoff, the equivalent of the momentum space RG procedure à la Wilson for graphs and applying this RG scheme to real networks in a natural and parsimonious way to define proper scale transformation at arbitrarily resolution scale, study the topological organisation of the network [2] and detect characteristic structures [3].

[1] P. Villegas, A. Gabrielli, G. Caldarelli, T. Gili, Laplacian paths in complex networks: Information core emerges from entropic transitions, Physical Review Research 4, 033196 (2022).

[2] P. Villegas, T. Gili, G. Caldarelli, A. Gabrielli, Laplacian Renormalization Group for heterogeneous networks, Nature Physics 19, 445–450 (2023).

[3] P. Villegas, A. Gabrielli, A. Poggialini, T. Gili, Multi-scale Laplacian community detection in heterogeneous networks, https://arxiv.org/abs/2301.04514

Condividi questo articolo: